Efficient and Secure Multi-Party Computation with Faulty Majority and Complete Fairness
نویسندگان
چکیده
We study the problem of constructing secure multi-party computation (MPC) protocols that are completely fair — meaning that either all the parties learn the output of the function, or nobody does — even when a majority of the parties are corrupted. We first propose a framework for fair multi-party computation, within which we formulate a definition of secure and fair protocols. The definition follows the standard simulation paradigm, but is modified to allow the protocol to depend on the runing time of the adversary. In this way, we avoid a well-known impossibility result for fair MPC with corrupted majority; in particular, our definition admits constructions that tolerate up to (n − 1) corruptions, where n is the total number of parties. Next, we define a “commit-provefair-open” functionality and construct an efficient protocol that realizes it, using a new variant of a cryptographic primitive known as “time-lines.” With this functionality, we show that some of the existing secure MPC protocols can be easily transformed into fair protocols while preserving their security. Putting these results together, we construct efficient, secure MPC protocols that are completely fair even in the presence of corrupted majorities. Furthermore, these protocols remain secure when arbitrarily composed with any protocols, which means, in particular, that they are concurrently-composable and non-malleable. Finally, as an example of our results, we show a very efficient protocol that fairly and securely solves the socialist millionaires’ problem.
منابع مشابه
On Complete Primitives for Fairness
For secure two-party and multi-party computation with abort, classification of which primitives are complete has been extensively studied in the literature. However, for fair secure computation, where (roughly speaking) either all parties learn the output or none do, the question of complete primitives has remained largely unstudied. In this work, we initiate a rigorous study of completeness fo...
متن کاملAn Efficient Protocol for Fair Secure Two-Party Computation
? In the 1980s, Yao presented a very efficient constant-round secure two-party computation protocol withstanding semi-honest adversaries, which is based on so-called garbled circuits. Later, several protocols based on garbled circuits covering malicious adversaries have been proposed. Only a few papers, however, discuss the fundamental property of fairness for two-party computation. So far the ...
متن کاملOptimally Efficient Multi-Party Fair Exchange and Fair Secure Multi-Party Computation
Multi-party fair exchange (MFE) and fair secure multi-party computation (fair SMPC) are under-studied fields of research, with practical importance. We examine MFE scenarios where every participant has some item, and at the end of the protocol, either every participant receives every other participant’s item, or no participant receives anything. This is a particularly hard scenario, even though...
متن کاملComplete Characterization of Fairness in Secure Two-Party Computation of Boolean Functions
Fairness is a desirable property in secure computation; informally it means that if one party gets the output of the function, then all parties get the output. Alas, an implication of Cleve’s result (STOC 86) is that when there is no honest majority, in particular in the important case of the two-party setting, there exist functions that cannot be computed with fairness. In a surprising result,...
متن کاملLegally-Enforceable Fairness in Secure Two-Party Computation
In the setting of secure multiparty computation, a set of mutually distrustful parties wish to securely compute some joint function of their private inputs. The computation should be carried out in a secure way, meaning that the properties privacy, correctness, independence of inputs, fairness and guaranteed output delivery should all be preserved. Unfortunately, in the case of no honest majori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2004 شماره
صفحات -
تاریخ انتشار 2004